Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal (ApJ)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal is an open access journal devoted to recent developments, discoveries, and theories in astronomy and astrophysics. Publications in ApJ constitute significant new research that is directly relevant to astrophysical applications, whether based on observational results or on theoretical insights or modeling.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde jul. 1995 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

0004-637X

ISSN electrónico

1538-4357

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

Deep Simultaneous Limits on Optical Emission from FRB 20190520B by 24.4 fps Observations with Tomo-e Gozen

Yuu NiinoORCID; Mamoru Doi; Shigeyuki SakoORCID; Ryou OhsawaORCID; Noriaki ArimaORCID; Ji-an JiangORCID; Nozomu TominagaORCID; Masaomi TanakaORCID; Di LiORCID; Chen-Hui NiuORCID; Chao-Wei TsaiORCID; Naoto KobayashiORCID; Hidenori Takahashi; Sohei Kondo; Yuki Mori; Tsutomu Aoki; Ko ArimatsuORCID; Toshihiro KasugaORCID; Shin-ichiro OkumuraORCID

<jats:title>Abstract</jats:title> <jats:p>We conduct 24.4 fps optical observations of repeating fast radio burst (FRB) 20190520B using Tomo-e Gozen, a high-speed CMOS camera mounted on the Kiso 105 cm Schmidt telescope, simultaneously with radio observations carried out using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). We succeeded in the simultaneous optical observations of 11 radio bursts that FAST detected. However, no corresponding optical emission was found. The optical fluence limits as deep as 0.068 Jy ms are obtained for the individual bursts (0.029 Jy ms on the stacked data) corrected for the dust extinction in the Milky Way. The fluence limit is deeper than those obtained in the previous simultaneous observations for an optical emission with a duration ≳0.1 ms. Although the current limits on radio-optical spectral energy distribution (SED) of FRBs are not constraining, we show that SED models based on observed SEDs of radio variable objects such as optically detected pulsars, and a part of parameter spaces of theoretical models in which FRB optical emission is produced by inverse Compton scattering in a pulsar magnetosphere or a strike of a magnetar blastwave into a hot wind bubble, can be ruled out once a similar fluence limit as in our observation is obtained for a bright FRB with a radio fluence ≳5 Jy ms.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 109

Tackling the Unique Challenges of Low-frequency Solar Polarimetry with the Square Kilometre Array Low Precursor: The Algorithm

Devojyoti KansabanikORCID; Divya OberoiORCID; Surajit MondalORCID

<jats:title>Abstract</jats:title> <jats:p>Coronal magnetic fields are well known to be one of the crucial parameters defining coronal physics and space weather. However, measuring the global coronal magnetic fields remains challenging. The polarization properties of coronal radio emissions are sensitive to coronal magnetic fields. While they can prove to be useful probes of coronal and heliospheric magnetic fields, their usage has been limited by technical and algorithmic challenges. We present a robust algorithm for precise polarization calibration and imaging of low-radio frequency solar observations and demonstrate it on data from the Murchison Widefield Array, a Square Kilometre Array (SKA) precursor. This algorithm is based on the <jats:italic>Measurement Equation</jats:italic> framework, which forms the basis of all modern radio interferometric calibration and imaging. It delivers high-dynamic-range and high-fidelity full-Stokes solar radio images with instrumental polarization leakages &lt;1%, on par with general astronomical radio imaging, and represents the state of the art. Opening up this rewarding, yet unexplored, phase space will enable multiple novel science investigations and offer considerable discovery potential. Examples include detection of low-level circular polarization from thermal coronal emission to estimate large-scale quiescent coronal fields; polarization of faint gyrosynchrotron emissions from coronal mass ejections for robust estimation of plasma parameters; and detection of the first-ever linear polarization at these frequencies. This method has been developed with the SKA in mind and will enable a new era of high-fidelity spectropolarimetric snapshot solar imaging at low radio frequencies.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 110

The Effects of Circumstellar Dust Scattering on the Light Curves and Polarizations of Type Ia Supernovae*

Maokai HuORCID; Lifan WangORCID; Xiaofeng WangORCID

<jats:title>Abstract</jats:title> <jats:p>Observational signatures of the circumstellar material (CSM) around Type Ia supernovae (SNe Ia) provide a unique perspective on their progenitor systems. The pre-supernova evolution of the SN progenitors may naturally eject CSM in most of the popular scenarios of SN Ia explosions. In this study, we investigate the influence of dust scattering on the light curves and polarizations of SNe Ia. A Monte Carlo method is constructed to numerically solve the process of radiative transfer through the CSM. Three types of geometric distributions of the CSM are considered: spherical shell, axisymmetric disk, and axisymmetric shell. We show that both the distance of the dust from the SN and the geometric distribution of the dust affect the light curve and color evolutions of SN. We found that the geometric location of the hypothetical circumstellar dust may not be reliably constrained based on photometric data alone, even for the best observed cases such as SN 2006X and SN 2014J, due to the degeneracy of CSM parameters. Our model results show that a time sequence of broadband polarimetry with appropriate time coverage from a month to about one year after explosion can provide unambiguous limits on the presence of circumstellar dust around SNe Ia.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 110

The X-Ray Luminosity Function Evolution of Quasars and the Correlation between the X-Ray and Ultraviolet Luminosities

J. SingalORCID; S. Mutchnick; V. PetrosianORCID

<jats:title>Abstract</jats:title> <jats:p>We explore the evolution of the X-ray luminosity function of quasars and the intrinsic correlation between the X-ray and 2500 Å ultraviolet luminosities, utilizing techniques verified in previous works and a sample of over 4000 quasars detected with Chandra and XMM-Newton in the range 0 &lt; <jats:italic>z</jats:italic> &lt; 5. We find that quasars have undergone significantly less evolution with redshift in their total X-ray luminosity than in other wave bands. We then determine that the best-fit intrinsic power-law correlation between the X-ray and ultraviolet luminosities, of the form <jats:inline-formula> <jats:tex-math> <?CDATA ${L}_{{\rm{X}}}^{{\prime} }\propto {({L}_{\mathrm{UV}}^{{\prime} })}^{\gamma }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">X</mml:mi> </mml:mrow> <mml:mrow> <mml:mo accent="true">′</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo>∝</mml:mo> <mml:msup> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>UV</mml:mi> </mml:mrow> <mml:mrow> <mml:mo accent="true">′</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>γ</mml:mi> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac6f06ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, is <jats:italic>γ</jats:italic> = 0.28 ± 0.03, and we derive the luminosity function and density evolution in the X-ray band. We discuss the implications of these results for models of quasar systems.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 111

Nodal Precession and Tidal Evolution of Two Hot Jupiters: WASP-33 b and KELT-9 b

Alexander P. StephanORCID; Ji WangORCID; P. Wilson CauleyORCID; B. Scott GaudiORCID; Ilya IlyinORCID; Marshall C. JohnsonORCID; Klaus G. StrassmeierORCID

<jats:title>Abstract</jats:title> <jats:p>Hot Jupiters orbiting rapidly rotating stars on inclined orbits undergo tidally induced nodal precession measurable over several years of observations. The Hot Jupiters WASP-33 b and KELT-9 b are particularly interesting targets because they are among the hottest planets found to date, orbiting relatively massive stars. Here, we analyze archival and new data that span 11 and 5 yr for WASP-33 b and KELT-9 b, respectively, in order to model and improve upon their tidal precession parameters. Our work confirms the nodal precession for WASP-33 b and presents the first clear detection of the precession of KELT-9 b. We determine that WASP-33 and KELT-9 have gravitational quadrupole moments <jats:inline-formula> <jats:tex-math> <?CDATA $({6.3}_{-0.8}^{+1.2})\times {10}^{-5}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo stretchy="false">(</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>6.3</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.8</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1.2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">)</mml:mo> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac6b9aieqn1.gif" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math> <?CDATA $({3.26}_{-0.80}^{+0.93})\times {10}^{-4}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo stretchy="false">(</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>3.26</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.80</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.93</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">)</mml:mo> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac6b9aieqn2.gif" xlink:type="simple" /> </jats:inline-formula>, respectively. We estimate the planets’ precession periods to be <jats:inline-formula> <jats:tex-math> <?CDATA ${1460}_{-130}^{+170}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>1460</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>130</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>170</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac6b9aieqn3.gif" xlink:type="simple" /> </jats:inline-formula> yr and <jats:inline-formula> <jats:tex-math> <?CDATA ${890}_{-140}^{+200}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>890</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>140</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>200</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac6b9aieqn4.gif" xlink:type="simple" /> </jats:inline-formula> yr, respectively, and that they will cease to transit their host stars around the years <jats:inline-formula> <jats:tex-math> <?CDATA ${2090}_{-10}^{+17}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>2090</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>17</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac6b9aieqn5.gif" xlink:type="simple" /> </jats:inline-formula> CE and <jats:inline-formula> <jats:tex-math> <?CDATA ${2074}_{-10}^{+12}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>2074</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>12</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac6b9aieqn6.gif" xlink:type="simple" /> </jats:inline-formula> CE, respectively. Additionally, we investigate both planets’ tidal and orbital evolution, suggesting that a high-eccentricity tidal migration scenario is possible to produce both system architectures and that they will most likely not be engulfed by their hosts before the end of their main-sequence lifetimes.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 111

An Optical Spectrum of the Diffuse Galactic Light from BOSS and IRIS

Blake ChellewORCID; Timothy D. BrandtORCID; Brandon S. HensleyORCID; Bruce T. DraineORCID; Eve Matthaey

<jats:title>Abstract</jats:title> <jats:p>We present a spectrum of the diffuse Galactic light (DGL) between 3700 and 10,000 Å, obtained by correlating optical sky intensity with far-infrared dust emission. We use nearly 250,000 blank-sky spectra from BOSS/SDSS-III together with IRIS-reprocessed maps from the IRAS satellite. The larger sample size compared to SDSS-II results in a factor-of-2 increase in signal to noise. We combine these data sets with a model for the optical/far-infrared correlation that accounts for self-absorption by dust. The spectral features of the DGL agree remarkably well with the features present in stellar spectra. There is evidence for a difference in the DGL continuum between the regions covered by BOSS in the northern and southern Galactic hemispheres. We interpret the difference at red wavelengths as the result of a difference in stellar populations, with mainly old stars in both regions, but a higher fraction of young stars in the south. There is also a broad excess in the southern DGL spectrum over the prediction of a simple radiative transfer model, without a clear counterpart in the north. We interpret this excess, centered at ∼6500 Å, as evidence for luminescence in the form of extended red emission. The observed strength of the 4000 Å break indicates that at most ∼7% of the dust-correlated light at 4000 Å can be due to blue luminescence. Our DGL spectrum provides constraints on dust scattering and luminescence, independent of measurements of extinction.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 112

GRB 210121A: Observation of Photospheric Emissions from Different Regimes and the Evolution of the Outflow

Xin-Ying SongORCID; Shuang-Nan ZhangORCID; Shu Zhang; Shao-Lin XiongORCID; Li-Ming SongORCID

<jats:title>Abstract</jats:title> <jats:p>GRB 210121A was observed by Insight-HXMT, by the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM), and by the Fermi Gamma-ray Burst Monitor (Fermi/GBM) on 2021 January 21. In this work, photospheric emission from a structured jet is preferred to interpret the prompt emission phase of GRB 210121A, and emissions from different regimes are observed on-axis. Particularly, the emission from the intermediate photosphere is first observed in the first 1.3 s of the prompt emission, while emissions from the other part are dominant by the emissions from the saturated regime. This offers an alternative explanation compared with previous work. Moreover, the emissions that consider the intermediate photosphere can well interpret the changes in the low-energy photon index <jats:italic>α</jats:italic> during the pulses. In addition, the evolution of the outflow is extracted from a time-resolved analysis, and a correlation of <jats:inline-formula> <jats:tex-math> <?CDATA ${{\rm{\Gamma }}}_{0}\propto {L}_{0}^{0.25\pm 0.5}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">Γ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> <mml:mo>∝</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>0.25</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.5</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac6b33ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> is obtained, which implies that the jet may be mainly launched by neutrino annihilation in a hyper-accretion disk.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 112

An Analytical Fourier Transformation Model for the Production of Hard and Soft X-Ray Time Lags in Active Galactic Nuclei: Application to 1H 0707-495

David C. BaughmanORCID; Peter A. BeckerORCID

<jats:title>Abstract</jats:title> <jats:p>The variability of the X-ray emission from active galactic nuclei is often characterized using time lags observed between soft and hard energy bands in the detector. The time lags are usually computed using the complex cross-spectrum, which is based on the Fourier transforms of the hard and soft time series data. It has been noted that some active galactic nuclei display soft X-ray time lags, in addition to the more ubiquitous hard lags. Hard time lags are thought to be produced via propagating fluctuations, spatial reverberation, or via the thermal Comptonization of soft seed photons injected into a hot electron cloud. The physical origin of the soft lags has been a subject of debate over the last decade. Currently, the reverberation interpretation is recognized as a leading theory. In this paper, we explore the alternative possibility that the soft X-ray time lags result partially from the thermal and bulk Comptonization of monochromatic seed photons which, in the case of the narrow-line Seyfert 1 galaxy 1H 0707-495, may correlate with fluorescence of iron L-line emission. In our model, the seed photons are injected into a hot, quasi-spherical corona in the inner region of the accretion flow. We develop an exact, time-dependent analytical model for the thermal and bulk Comptonization of the seed photons based on a Fourier-transformed radiation transport equation, and we demonstrate that the model successfully reproduces both the hard and soft time lags observed from 1H 0707-495.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 113

Factors That Determine the Power-law Index of an Energy Distribution of Solar Flares

Toshiki KawaiORCID; Shinsuke Imada

<jats:title>Abstract</jats:title> <jats:p>The power-law index of an occurrence frequency distribution of flares as a function of energy is one of the most important indicators to evaluate the contribution of small-scale flares to coronal heating. For a few decades, many studies tried to derive the power-law index using various instruments and methods. However, these results are various and the cause of this uncertainty is unknown due to the variety of observation conditions. Therefore, we investigated the dependence of the index on the solar activity, coronal features, released energy range, and active region properties such as magnetic flux, twist, and size. Our findings are (1) annual power-law index derived from time series of total solar irradiance (Sun-as-a-star observation analysis) has a negative correlation with sunspot number; (2) power-law index in active region is smaller than that of the quiet Sun and coronal holes; (3) power-law index is almost constant in the energy range of 10<jats:sup>25</jats:sup> ≲ <jats:italic>E</jats:italic> ≲ 10<jats:sup>30</jats:sup> erg; and (4) active regions that have more magnetic free energy density, unsigned magnetic flux, and shear angle tend to have smaller power-law indices. Based on the results and energy-scaling law of Petschek-type reconnection, we suggest that the power-law index of sunspot-scale events is smaller than that of granule-scale events. Moreover, we indicated that sunspot-scale events follow CSHKP flare model whereas granule-scale events follow Parker’s nanoflare model.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 113

CO Line Emission Surfaces and Vertical Structure in Midinclination Protoplanetary Disks

Charles J. LawORCID; Sage CrystianORCID; Richard TeagueORCID; Karin I. ÖbergORCID; Evan A. RichORCID; Sean M. AndrewsORCID; Jaehan BaeORCID; Kevin FlahertyORCID; Viviana V. GuzmánORCID; Jane HuangORCID; John D. IleeORCID; Joel H. KastnerORCID; Ryan A. LoomisORCID; Feng LongORCID; Laura M. PérezORCID; Sebastián PérezORCID; Chunhua QiORCID; Giovanni P. RosottiORCID; Dary Ruíz-RodríguezORCID; Takashi TsukagoshiORCID; David J. WilnerORCID

<jats:title>Abstract</jats:title> <jats:p>High spatial resolution CO observations of midinclination (≈30°–75°) protoplanetary disks offer an opportunity to study the vertical distribution of CO emission and temperature. The asymmetry of line emission relative to the disk major axis allows for a direct mapping of the emission height above the midplane, and for optically thick, spatially resolved emission in LTE, the intensity is a measure of the local gas temperature. Our analysis of Atacama Large Millimeter/submillimeter Array archival data yields CO emission surfaces, dynamically constrained stellar host masses, and disk atmosphere gas temperatures for the disks around the following: HD 142666, MY Lup, V4046 Sgr, HD 100546, GW Lup, WaOph 6, DoAr 25, Sz 91, CI Tau, and DM Tau. These sources span a wide range in stellar masses (0.50–2.10 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>), ages (∼0.3–23 Myr), and CO gas radial emission extents (≈200–1000 au). This sample nearly triples the number of disks with mapped emission surfaces and confirms the wide diversity in line emitting heights (<jats:italic>z</jats:italic>/<jats:italic>r</jats:italic> ≈ 0.1 to ≳0.5) hinted at in previous studies. We compute the radial and vertical CO gas temperature distributions for each disk. A few disks show local temperature dips or enhancements, some of which correspond to dust substructures or the proposed locations of embedded planets. Several emission surfaces also show vertical substructures, which all align with rings and gaps in the millimeter dust. Combining our sample with literature sources, we find that CO line emitting heights weakly decline with stellar mass and gas temperature, which, despite large scatter, is consistent with simple scaling relations. We also observe a correlation between CO emission height and disk size, which is due to the flared structure of disks. Overall, CO emission surfaces trace ≈2–5× gas pressure scale heights (H<jats:sub>g</jats:sub>) and could potentially be calibrated as empirical tracers of H<jats:sub>g</jats:sub>.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 114