Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal (ApJ)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal is an open access journal devoted to recent developments, discoveries, and theories in astronomy and astrophysics. Publications in ApJ constitute significant new research that is directly relevant to astrophysical applications, whether based on observational results or on theoretical insights or modeling.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 1995 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
0004-637X
ISSN electrónico
1538-4357
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
Measurement of the Relativistic Sunyaev–Zeldovich Correction in RX J1347.5-1145
Victoria L. Butler; Richard M. Feder; Tansu Daylan; Adam B. Mantz; Dale Mercado; Alfredo Montaña; Stephen K. N. Portillo; Jack Sayers; Benjamin J. Vaughan; Michael Zemcov; Adi Zitrin
<jats:title>Abstract</jats:title> <jats:p>We present a measurement of the relativistic corrections to the thermal Sunyaev–Zel’dovich (SZ) effect spectrum, the rSZ effect, toward the massive galaxy cluster RX J1347.5-1145 by combining submillimeter images from Herschel-SPIRE with millimeter wavelength Bolocam maps. Our analysis simultaneously models the SZ effect signal, the population of cosmic infrared background galaxies, and the galactic cirrus dust emission in a manner that fully accounts for their spatial and frequency-dependent correlations. Gravitational lensing of background galaxies by RX J1347.5-1145 is included in our methodology based on a mass model derived from the Hubble Space Telescope observations. Utilizing a set of realistic mock observations, we employ a forward modeling approach that accounts for the non-Gaussian covariances between the observed astrophysical components to determine the posterior distribution of SZ effect brightness values consistent with the observed data. We determine a maximum a posteriori (MAP) value of the average Comptonization parameter of the intracluster medium (ICM) within <jats:italic>R</jats:italic> <jats:sub>2500</jats:sub> to be 〈<jats:italic>y</jats:italic>〉<jats:sub>2500</jats:sub> = 1.56 × 10<jats:sup>−4</jats:sup>, with corresponding 68% credible interval [1.42, 1.63] × 10<jats:sup>−4</jats:sup>, and a MAP ICM electron temperature of 〈<jats:italic>T</jats:italic> <jats:sub>sz</jats:sub>〉<jats:sub>2500</jats:sub> = 22.4 keV with 68% credible interval spanning [10.4, 33.0] keV. This is in good agreement with the pressure-weighted temperature obtained from Chandra X-ray observations, 〈<jats:italic>T</jats:italic> <jats:sub>x,pw</jats:sub>〉<jats:sub>2500</jats:sub> = 17.4 ± 2.3 keV. We aim to apply this methodology to comparable existing data for a sample of 39 galaxy clusters, with an estimated uncertainty on the ensemble mean 〈<jats:italic>T</jats:italic> <jats:sub>sz</jats:sub>〉<jats:sub>2500</jats:sub> at the ≃ 1 keV level, sufficiently precise to probe ICM physics and to inform X-ray temperature calibration.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 55
Statistics of Water-group Band Ion Cyclotron Waves in Saturn's Inner Magnetosphere Based on 13 yr of Cassini Measurements
Minyi Long; Xing Cao; Xudong Gu; Binbin Ni; Shaojie Qu; Shengyi Ye; Zhonghua Yao; Siyuan Wu; Yan Xu
<jats:title>Abstract</jats:title> <jats:p>Based on Cassini observations from 2004 to 2016, we perform a comprehensive analysis of the statistical distribution of the occurrence rate, averaged amplitude, wave normal angle (WNA), ellipticity, and power spectral intensity of ion cyclotron waves in Saturn's inner magnetosphere. Our results show that ion cyclotron waves mainly occur between the orbits of Enceladus and Dione near the equatorial region (∣<jats:italic>λ</jats:italic>∣ < 20°), with higher occurrence rates in the northern hemisphere than the southern hemisphere. The averaged wave amplitudes vary between 0.1 and 2 nT with a strong day–night asymmetry and a pronounced minimum at the equator. Saturnian ion cyclotron waves are predominantly left-handed polarized with small WNAs near the equator and become linearly polarized with larger WNAs at higher latitudes. The major wave power occurs frequently at frequencies of 0.5–1.2 <jats:inline-formula> <jats:tex-math> <?CDATA ${f}_{{w}^{+}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mi>f</mml:mi> <mml:msup> <mml:mi>w</mml:mi> <mml:mo>+</mml:mo> </mml:msup> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac6bf0ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, where <jats:inline-formula> <jats:tex-math> <?CDATA ${f}_{{w}^{+}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mi>f</mml:mi> <mml:msup> <mml:mi>w</mml:mi> <mml:mo>+</mml:mo> </mml:msup> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac6bf0ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> is the equatorial gyrofrequency of H<jats:sub>2</jats:sub>O<jats:sup>+</jats:sup> ions, with the strongest intensity (>∼10 nT<jats:sup>2</jats:sup> Hz<jats:sup>−1</jats:sup>) at <jats:italic>L</jats:italic> ∼ 6.5 statistically present in the midnight sector.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 56
The Wind Temperature and Mass-loss Rate of Arcturus (K1.5 III)
Graham M. Harper; Thomas R. Ayres; Eamon O’Gorman
<jats:title>Abstract</jats:title> <jats:p>In this paper we aim to constrain the wind temperature, outflow and turbulent velocities, ionization state, and mass-loss rate of the single red giant Arcturus (<jats:italic>α</jats:italic> Boo K1.5 III) using high spectral resolution Hubble Space Telescope Space Telescope Imaging Spectrograph profiles of Si <jats:sc>iii</jats:sc> 1206.5 Å , O <jats:sc>i</jats:sc> 1304 Å and 1306 Å, C <jats:sc>ii</jats:sc> 1334 Å and 1335 Å, and Mg <jats:sc>ii</jats:sc> h 2802 Å. The use of the E140-H setting for <jats:italic>α</jats:italic> Boo allows the Si <jats:sc>iii</jats:sc> 1206.5 Å line to be cleanly extracted from the echelle format for the first time. The ratios of the wind optical depths of lines from different species constrain the temperature at the base of the wind to <jats:italic>T</jats:italic> <jats:sub>wind</jats:sub> ∼ 15,400 K. The mass-loss rate derived is 2.5 × 10<jats:sup>−11</jats:sup> <jats:inline-formula> <jats:tex-math> <?CDATA $\,{{M}_{\odot }\,{\rm{yr}}}^{-1}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> <mml:mspace width="0.25em" /> <mml:mi mathvariant="normal">yr</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac69d6ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> for Epoch 2018–2019, smaller than previous semiempirical estimates. These results can be reconciled with multiwavelength Very Large Array radio continuum fluxes for Epoch 2011–2012 by increasing the temperature to <jats:italic>T</jats:italic> <jats:sub>wind</jats:sub> ∼ 18,000 K, or increasing the mass-loss rate to 4.0 × 10<jats:sup>−11</jats:sup> <jats:inline-formula> <jats:tex-math> <?CDATA $\,{{M}_{\odot }\,{\rm{yr}}}^{-1}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> <mml:mspace width="0.25em" /> <mml:mi mathvariant="normal">yr</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac69d6ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>. Interpreting the wind acceleration and turbulence in terms of a steady WKB Alfvén wave–driven wind reveals that the wave energy damping length increases with increasing radius, opposite to the trend expected for ion-neutral damping of monochromatic waves, confirming a previous result by Kuin and Ahmad derived for <jats:italic>ζ</jats:italic> Aur binaries. This implies that a spectrum of waves is required in this framework with wave periods in the range of hours to days, consistent with the photospheric granulation timescale. Constraints on a radial magnetic field (B) at 1.2 <jats:italic>R</jats:italic> <jats:sub>*</jats:sub> are an upper limit of <jats:italic>B</jats:italic> ≤ 2 G from the implied wave heating, and <jats:italic>B</jats:italic> ≥ 0.3 G to avoid excessive wave amplitudes.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 57
The Circumstellar Environments of Double-peaked, Calcium-strong Transients 2021gno and 2021inl
W. V. Jacobson-Galán; P. Venkatraman; R. Margutti; D. Khatami; G. Terreran; R. J. Foley; R. Angulo; C. R. Angus; K. Auchettl; P. K. Blanchard; A. Bobrick; J. S. Bright; D. Brout; K. C. Chambers; C. D. Couch; D. A. Coulter; K. Clever; K. W. Davis; T. J. L. de Boer; L. DeMarchi; S. A. Dodd; D. O. Jones; J. Johnson; C. D. Kilpatrick; N. Khetan; Z. Lai; D. Langeroodi; C.-C. Lin; E. A. Magnier; D. Milisavljevic; H. B. Perets; J. D. R. Pierel; J. Raymond; S. Rest; A. Rest; R. Ridden-Harper; K. J. Shen; M. R. Siebert; C. Smith; K. Taggart; S. Tinyanont; F. Valdes; V. A. Villar; Q. Wang; S. K. Yadavalli; Y. Zenati; A. Zenteno
<jats:title>Abstract</jats:title> <jats:p>We present panchromatic observations and modeling of calcium-strong supernovae (SNe) 2021gno in the star-forming host-galaxy NGC 4165 and 2021inl in the outskirts of elliptical galaxy NGC 4923, both monitored through the Young Supernova Experiment transient survey. The light curves of both, SNe show two peaks, the former peak being derived from shock cooling emission (SCE) and/or shock interaction with circumstellar material (CSM). The primary peak in SN 2021gno is coincident with luminous, rapidly decaying X-ray emission (<jats:italic>L</jats:italic> <jats:sub> <jats:italic>x</jats:italic> </jats:sub> = 5 × 10<jats:sup>41</jats:sup> erg s<jats:sup>−1</jats:sup>) detected by Swift-XRT at <jats:italic>δ</jats:italic> <jats:italic>t</jats:italic> = 1 day after explosion, this observation being the second-ever detection of X-rays from a calcium-strong transient. We interpret the X-ray emission in the context of shock interaction with CSM that extends to <jats:italic>r</jats:italic> < 3 × 10<jats:sup>14</jats:sup> cm. Based on X-ray modeling, we calculate a CSM mass <jats:italic>M</jats:italic> <jats:sub>CSM</jats:sub> = (0.3−1.6) × 10<jats:sup>−3</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> and density <jats:italic>n</jats:italic> = (1−4) × 10<jats:sup>10</jats:sup> cm<jats:sup>−3</jats:sup>. Radio nondetections indicate a low-density environment at larger radii (<jats:italic>r</jats:italic> > 10<jats:sup>16</jats:sup> cm) and mass-loss rate of <jats:inline-formula> <jats:tex-math> <?CDATA $\dot{M}\lt {10}^{-4}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mover accent="true"> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>̇</mml:mo> </mml:mrow> </mml:mover> <mml:mo><</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac67dcieqn1.gif" xlink:type="simple" /> </jats:inline-formula> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> yr<jats:sup>−1</jats:sup>. SCE modeling of both primary light-curve peaks indicates an extended-progenitor envelope mass <jats:italic>M</jats:italic> <jats:sub> <jats:italic>e</jats:italic> </jats:sub> = 0.02−0.05 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> and radius <jats:italic>R</jats:italic> <jats:sub> <jats:italic>e</jats:italic> </jats:sub> = 30−230 <jats:italic>R</jats:italic> <jats:sub>⊙</jats:sub>. The explosion properties suggest progenitor systems containing either a low-mass massive star or a white dwarf (WD), the former being unlikely given the lack of local star formation. Furthermore, the environments of both SNe are consistent with low-mass hybrid He/C/O WD + C/O WD mergers.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 58
Magnetic Field Observations in the Very Local Interstellar Medium by Voyagers 1 and 2
L. F. Burlaga; N. F. Ness; D. B. Berdichevsky; L. K. Jian; W. Kurth; J. Park; J. Rankin; A. Szabo
<jats:title>Abstract</jats:title> <jats:p>Observations of the magnetic field <jats:bold> <jats:italic>B</jats:italic> </jats:bold> in the very local interstellar medium (VLISM) were made by Voyager 1 (V1) in the northern hemisphere from 2012 to mid-2021 and by Voyager 2 (V2) in the southern hemisphere from 2018 through 2020. Near 2019.4, V2 observed an abrupt increase in <jats:italic>B</jats:italic> associated with a pressure front near the heliopause. During 2020, V2 observed an abrupt increase in <jats:italic>B</jats:italic> at a jump in <jats:italic>B</jats:italic> that was preceded by electron plasma oscillations and cosmic rays, indicating that it was a shock. The shock was followed by a decrease in <jats:italic>B</jats:italic> ending ∼50 days later. V2 observed large-scale waves in all three components of <jats:bold> <jats:italic>B</jats:italic> </jats:bold>, before and after the shock. The largest- and intermediate-amplitude waves were in the <jats:italic>BN</jats:italic> and <jats:italic>BR</jats:italic> component, respectively, indicating that the waves were predominantly transverse several au from the heliopause. It was shown previously that waves near the heliopause were predominantly longitudinal at V1 and V2. Thus, V2 observed a mode transformation process within 10 au of the heliopause in the southern hemisphere, like that observed by V1 in the northern hemisphere. The elevation and azimuthal angles observed by V1 and V2 varied linearly with increasing distance in the VLISM. Voyager 1 observed jumps in <jats:italic>B</jats:italic> at two shocks and a pressure front, each followed by a decrease in <jats:italic>B</jats:italic> in a ramp. V1 also observed a fourth jump in <jats:italic>B</jats:italic>, at 2020.4, but <jats:italic>B continued to increase</jats:italic> until at least year 2021.5. This long-lasting increase in <jats:italic>B</jats:italic> was not anticipated.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 59
Primordial Helium-3 Redux: The Helium Isotope Ratio of the Orion Nebula*
Ryan J. Cooke; Pasquier Noterdaeme; James W. Johnson; Max Pettini; Louise Welsh; Celine Peroux; Michael T. Murphy; David H. Weinberg
<jats:title>Abstract</jats:title> <jats:p>We report the first direct measurement of the helium isotope ratio, <jats:sup>3</jats:sup>He/<jats:sup>4</jats:sup>He, outside of the Local Interstellar Cloud, as part of science-verification observations with the upgraded CRyogenic InfraRed Echelle Spectrograph. Our determination of <jats:sup>3</jats:sup>He/<jats:sup>4</jats:sup>He is based on metastable He <jats:sc>i</jats:sc>* absorption along the line of sight toward Θ<jats:sup>2</jats:sup>A Ori in the Orion Nebula. We measure a value <jats:sup>3</jats:sup>He/<jats:sup>4</jats:sup>He = (1.77 ± 0.13) × 10<jats:sup>−4</jats:sup>, which is just ∼40% above the primordial relative abundance of these isotopes, assuming the Standard Model of particle physics and cosmology, (<jats:sup>3</jats:sup>He/<jats:sup>4</jats:sup>He)<jats:sub>p</jats:sub> = (1.257 ± 0.017) × 10<jats:sup>−4</jats:sup>. We calculate a suite of galactic chemical evolution simulations to study the Galactic build up of these isotopes, using the yields from Limongi & Chieffi for stars in the mass range <jats:italic>M</jats:italic> = 8–100 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> and Lagarde et al. for <jats:italic>M</jats:italic> = 0.8–8 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>. We find that these simulations simultaneously reproduce the Orion and protosolar <jats:sup>3</jats:sup>He/<jats:sup>4</jats:sup>He values if the calculations are initialized with a primordial ratio <jats:inline-formula> <jats:tex-math> <?CDATA ${\left({}^{3}\mathrm{He}{/}^{4}\mathrm{He}\right)}_{{\rm{p}}}=(1.043\pm 0.089)\times {10}^{-4}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mi>He</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> <mml:mi>He</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">p</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1.043</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.089</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac6503ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>. Even though the quoted error does not include the model uncertainty, this determination agrees with the Standard Model value to within ∼2<jats:italic>σ</jats:italic>. We also use the present-day Galactic abundance of deuterium (D/H), helium (He/H), and <jats:sup>3</jats:sup>He/<jats:sup>4</jats:sup>He to infer an empirical limit on the primordial <jats:sup>3</jats:sup>He abundance, <jats:inline-formula> <jats:tex-math> <?CDATA ${\left({}^{3}\mathrm{He}/{\rm{H}}\right)}_{{\rm{p}}}\leqslant (1.09\pm 0.18)\times {10}^{-5}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mfenced close=")" open="("> <mml:mrow> <mml:msup> <mml:mrow /> <mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mi>He</mml:mi> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">p</mml:mi> </mml:mrow> </mml:msub> <mml:mo>≤</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1.09</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.18</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac6503ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>, which also agrees with the Standard Model value. We point out that it is becoming increasingly difficult to explain the discrepant primordial <jats:sup>7</jats:sup>Li/H abundance with nonstandard physics, without breaking the remarkable simultaneous agreement of three primordial element ratios (D/H, <jats:sup>4</jats:sup>He/H, and <jats:sup>3</jats:sup>He/<jats:sup>4</jats:sup>He) with the Standard Model values.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 60
The Criterion for Chaos in Three-planet Systems
Jeremy Rath; Sam Hadden; Yoram Lithwick
<jats:title>Abstract</jats:title> <jats:p>We establish the criterion for chaos in three-planet systems, for systems similar to those discovered by the Kepler spacecraft. Our main results are as follows: (i) The simplest criterion, which is based on overlapping mean motion resonances (MMRs), only agrees with numerical simulations at a very crude level. (ii) Much greater accuracy is attained by considering neighboring MMRs that do not overlap. We work out the widths of the chaotic zones around each of the neighbors, and also provide simple approximate expressions for the widths. (iii) Even greater accuracy is provided by the overlap of three-body resonances (3BRs), which accounts for the fine-grained structure seen in maps from <jats:italic>N</jats:italic>-body simulations, and also predicts Lyapunov times. From previous studies, it is unclear whether interplanetary chaos should be attributed to the overlap of MMRs or of 3BRs. We show that the two apparently contradictory viewpoints are in fact consistent: both predict the same criterion for chaos. (iv) We compare the predicted criterion with high-resolution maps of chaos from <jats:italic>N</jats:italic>-body simulations, and show that they agree at a high level of detail.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 61
The Temporal and Spatial Behaviors of CME Occurrence Rate at Different Latitudes
Jiaqi Lin; Feng Wang; Linhua Deng; Hui Deng; Ying Mei; Yangfan Xie
<jats:title>Abstract</jats:title> <jats:p>The statistical study of the coronal mass ejections (CMEs) is a hot topic in solar physics. To further reveal the temporal and spatial behaviors of the CMEs at different latitudes and heights, we analyzed the correlation and phase relationships between the occurrence rate of CMEs, the coronal brightness index (CBI), and the 10.7 cm solar radio flux (F10.7). We found that the occurrence rate of the CMEs correlates with the CBI relatively stronger at high latitudes (≥60°) than at low latitudes (≤50°). At low latitudes, the occurrence rate of the CMEs correlates relatively weaker with the CBI than the F10.7. There is a relatively stronger correlation relationship between CMEs, the F10.7, and the CBI during Solar Cycle 24 (SC24) than Solar Cycle 23 (SC23). During SC23, the high-latitude CME occurrence rate lags behind the F10.7 by 3 months, and during SC24, the low-latitude CME occurrence rate leads the low-latitude CBI by 1 month. The correlation coefficient values turn out to be larger when the very faint CMEs are removed from the samples of the CDAW catalog. Based on our results, we may speculate that the source regions of the high/low-latitude CMEs may vary in height, and the process of magnetic energy accumulation and dissipation is from the lower to the upper atmosphere of the Sun. The temporal offsets between different indicators could help us better understand the physical processes responsible for the solar-terrestrial interactions.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 62
Deriving Thermonuclear Supernova Properties from Gamma-Ray Line Measurements
M. D. Leising
<jats:title>Abstract</jats:title> <jats:p>We illustrate methods for deriving properties of thermonuclear, or Type Ia, supernovae, including synthesized <jats:sup>56</jats:sup>Ni mass, total ejecta mass, ejecta kinetic energy, and <jats:sup>56</jats:sup>Ni distribution in velocity, from gamma-ray line observations. We simulate data from a small number of published SNe Ia models for a simple gamma-ray instrument, and measure their underlying properties from straightforward analyses. Assuming spherical symmetry and homologous expansion, we calculate exact line profiles for all <jats:sup>56</jats:sup>Co and <jats:sup>56</jats:sup>Ni lines at all times, requiring only the variation of mass density and <jats:sup>56</jats:sup>Ni mass fraction with expansion velocity as input. By parameterizing these quantities, we iterate the parameters to fit the simulated data. We fit the full profiles of multiple lines, or we integrate over the lines and fit line fluxes only versus time. Line profile fits are more robust, but in either case, we can recover accurately the values of the aforementioned properties of the models simulated, given sufficient signal to noise in the lines. A future gamma-ray mission with line sensitivity approaching 10<jats:sup>−6</jats:sup> photons cm<jats:sup>−2</jats:sup> s<jats:sup>−1</jats:sup> would measure these properties for many SNe Ia, and with unprecedented precision and accuracy for a few per year. Our analyses applied to the reported <jats:sup>56</jats:sup>Co lines from SN 2014J favor a low <jats:sup>56</jats:sup>Ni mass and low ejecta mass, relative to other estimates.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 63
Circumnuclear Medium around the Central AGN in a Cool-core Cluster, Abell 1644-South
Junhyun Baek; Aeree Chung; Alastair Edge; Tom Rose; Jae-Woo Kim; Taehyun Jung
<jats:title>Abstract</jats:title> <jats:p>We present the circumnuclear multiphase gas properties of the brightest cluster galaxy (BCG) in the center of Abell 1644-South (A1644-S). A1644-S is the main cluster in a merging system, which is well known for X-ray hot gas sloshing in its core. The sharply peaked X-ray profile of A1644-S implies the presence of a strongly cooling gas core. In this study, we analyze ALMA <jats:sup>12</jats:sup>CO (1–0) data, JVLA H <jats:sc>i</jats:sc> data, and KaVA 22 GHz data for the central region of A1644-S to probe the potential origin of the cool gas and its role in (re)powering the central active galactic nucleus (AGN). We find CO clumps distributed in an arc shape along the X-ray gas sloshing, which is suggestive of a connection between the cold gas and the hot intracluster medium (ICM). H <jats:sc>i</jats:sc> and CN are detected in absorption against the AGN continuum emission. The absorption dip is observed at the systemic velocity of the BCG with an extended, redshifted tail. Based on the spatial and spectral configurations of the H <jats:sc>i</jats:sc>, CN, and CO gases, it is inferred that cool gas spirals into the core of the BCG, which is then fed to the central AGN. Indeed, our KaVA observation reveals a parsec-scale bipolar jet, implying that this AGN could have been (re)powered quite recently. Combining this, we suggest that some cold gas in A1644-S could have been formed from the cooling of the ICM, triggering the activity of the central AGN in the early development of a cool-core cluster.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 64