Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal (ApJ)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal is an open access journal devoted to recent developments, discoveries, and theories in astronomy and astrophysics. Publications in ApJ constitute significant new research that is directly relevant to astrophysical applications, whether based on observational results or on theoretical insights or modeling.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 1995 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
0004-637X
ISSN electrónico
1538-4357
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
Nuclear Matter and Neutron Stars from Relativistic Brueckner–Hartree–Fock Theory
Hui Tong; Chencan Wang; Sibo Wang
<jats:title>Abstract</jats:title> <jats:p>The momentum and isospin dependence of the single-particle potential for the in-medium nucleon are the key quantities in the Relativistic Brueckner–Hartree–Fock (RBHF) theory. It depends on how to extract the scalar and the vector components of the single-particle potential inside nuclear matter. In contrast to the RBHF calculations in the Dirac space with the positive-energy states (PESs) only, the single-particle potential can be determined in a unique way by the RBHF theory together with the negative-energy states, i.e., the RBHF theory in the full Dirac space. The saturation properties of symmetric and asymmetric nuclear matter in the full Dirac space are systematically investigated based on the realistic Bonn nucleon–nucleon potentials. In order to further specify the importance of the calculations in the full Dirac space, the neutron star properties are investigated. The direct URCA process in neutron star cooling will happen at density <jats:italic>ρ</jats:italic> <jats:sub>DURCA</jats:sub> = 0.43, 0.48, 0.52 fm<jats:sup>−3</jats:sup> with proton fractions of <jats:italic>Y</jats:italic> <jats:sub> <jats:italic>p</jats:italic>,DURCA</jats:sub> = 0.13. The radii of a 1.4<jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> neutron star are predicated as <jats:inline-formula> <jats:tex-math> <?CDATA ${R}_{1.4{M}_{\odot }}=11.97,12.13,12.27$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1.4</mml:mn> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>11.97</mml:mn> <mml:mo>,</mml:mo> <mml:mn>12.13</mml:mn> <mml:mo>,</mml:mo> <mml:mn>12.27</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac65fcieqn1.gif" xlink:type="simple" /> </jats:inline-formula> km, and their tidal deformabilities are <jats:inline-formula> <jats:tex-math> <?CDATA ${{\rm{\Lambda }}}_{1.4{M}_{\odot }}=376,405,433$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">Λ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1.4</mml:mn> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>376</mml:mn> <mml:mo>,</mml:mo> <mml:mn>405</mml:mn> <mml:mo>,</mml:mo> <mml:mn>433</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac65fcieqn2.gif" xlink:type="simple" /> </jats:inline-formula> for potential Bonn A, B, C. Compared with the results obtained in the Dirac space with PESs only, the full-Dirac-space RBHF calculation predicts the softest symmetry energy, which would be more favored by the gravitational wave detection of GW170817. Furthermore, the results from the full-Dirac-space RBHF theory are consistent with the recent astronomical observations of massive neutron stars and simultaneous mass–radius measurement.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 137
Detection of a Superluminous Spiral Galaxy in the Heart of a Massive Galaxy Cluster
Ákos Bogdán; Lorenzo Lovisari; Patrick Ogle; Orsolya E. Kovács; Thomas Jarrett; Christine Jones; William R. Forman; Lauranne Lanz
<jats:title>Abstract</jats:title> <jats:p>It is well established that brightest cluster galaxies (BCGs), residing in the centers of galaxy clusters, are typically massive and quenched galaxies with cD or elliptical morphology. An optical survey suggested that an exotic galaxy population, superluminous spiral and lenticular galaxies, could be the BCGs of some galaxy clusters. Because the cluster membership and the centroid of a cluster cannot be accurately determined based solely on optical data, we followed up a sample of superluminous disk galaxies and their environments using XMM-Newton X-ray observations. Specifically, we explored seven superluminous spiral and lenticular galaxies that are candidate BCGs. We detected massive galaxy clusters around five superluminous disk galaxies and established that one superluminous spiral, 2MASX J16273931+3002239, is the central BCG of a galaxy cluster. The temperature and total mass of the cluster are <jats:inline-formula> <jats:tex-math> <?CDATA ${{kT}}_{500}={3.55}_{-0.20}^{+0.18}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi mathvariant="italic">kT</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>500</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>3.55</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.20</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.18</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac62cdieqn1.gif" xlink:type="simple" /> </jats:inline-formula> keV and <jats:italic>M</jats:italic> <jats:sub>500</jats:sub> = (2.39 ± 0.19) × 10<jats:sup>14</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>. We identified the central galaxies of the four clusters that do not host superluminous disk galaxies at their cores, and established that the centrals are massive elliptical galaxies. However, for two of the clusters, the offset superluminous spirals are brighter than the central galaxies, implying that the superluminous disk galaxies are the <jats:italic>brightest</jats:italic> cluster galaxies. Our results demonstrate that superluminous disk galaxies are rarely the central systems of galaxy clusters. This is likely because galactic disks are destroyed by major mergers, which are more frequent in high-density environments. We speculate that the disks of superluminous disk galaxies in cluster cores may have been reformed due to mergers with gas-rich satellites.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 138
Search for the Birefringence of Gravitational Waves with the Third Observing Run of Advanced LIGO-Virgo
Zhi-Chao Zhao; Zhoujian Cao; Sai Wang
<jats:title>Abstract</jats:title> <jats:p>Gravitational waves would attain birefringence during their propagation from distant sources to the Earth, when the charge, parity, and time reversal (CPT) symmetry is broken. If it was sizeable enough, such birefringence could be measured by the Advanced LIGO, Virgo, and KAGRA detector network. In this work, we place constraints on the birefringence of gravitational waves with the third observing run of this network, i.e., two catalogs GWTC-2 and GWTC-3. For the dispersion relation <jats:italic>ω</jats:italic> <jats:sup>2</jats:sup> = <jats:italic>k</jats:italic> <jats:sup>2</jats:sup> ± 2<jats:italic>ζ</jats:italic> <jats:italic>k</jats:italic> <jats:sup>3</jats:sup>, our analysis shows the up-to-date strictest limit on the CPT-violating parameter, i.e., <jats:inline-formula> <jats:tex-math> <?CDATA $\zeta ={4.07}_{-5.79}^{+5.91}\times {10}^{-17}{\rm{m}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>ζ</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>4.07</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5.79</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>5.91</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>17</mml:mn> </mml:mrow> </mml:msup> <mml:mi mathvariant="normal">m</mml:mi> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac62d3ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, at 68% confidence level. This limit is stricter by ∼5 times when compared to the existing one (∼2× 10<jats:sup>−16</jats:sup> m) and stands for the first ∼10 GeV-scale test of the CPT symmetry in gravitational waves. The results of the Bayes factor strongly disfavor the birefringence scenario of gravitational waves.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 139
Probing the Early History of Cosmic Reionization by Future Cosmic Microwave Background Experiments
Hina Sakamoto; Kyungjin Ahn; Kiyotomo Ichiki; Hyunjin Moon; Kenji Hasegawa
<jats:title>Abstract</jats:title> <jats:p>Cosmic reionization imprints its signature on the temperature and polarization anisotropies of the cosmic microwave background (CMB). Advances in CMB telescopes have already placed a significant constraint on the history of reionization. As near-future CMB telescopes target the maximum sensitivity, or observations limited only by the cosmic variance (CV), we hereby forecast the potential of future CMB observations in constraining the history of reionization. In this study, we perform Markov Chain Monte Carlo analysis for CV-limited <jats:italic>E</jats:italic>-mode polarization observations such as the Lite (Light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection (LiteBIRD), based on a few different methods that vary in the way of sampling reionization histories. We focus especially on estimating the very early history of reionization that occurs at redshifts <jats:italic>z</jats:italic> > 15, which is quantified by the partial CMB optical depth due to free electrons at <jats:italic>z</jats:italic> > 15, <jats:italic>τ</jats:italic> <jats:sub> <jats:italic>z</jats:italic>>15</jats:sub>. We find that reionization with <jats:italic>τ</jats:italic> <jats:sub> <jats:italic>z</jats:italic>>15</jats:sub> ∼ 0.008, which is well below the current upper limit <jats:italic>τ</jats:italic> <jats:sub> <jats:italic>z</jats:italic>>15</jats:sub> ∼ 0.02, is achievable by reionization models with minihalo domination in the early phase and can be distinguished from those with <jats:italic>τ</jats:italic> <jats:sub> <jats:italic>z</jats:italic>>15</jats:sub> ≲ 5 × 10<jats:sup>−4</jats:sup> through CV-limited CMB polarization observations. An accurate estimation of <jats:italic>τ</jats:italic> <jats:sub> <jats:italic>z</jats:italic>>15</jats:sub>, however, remains somewhat elusive. We investigate whether resampling the <jats:italic>E</jats:italic>-mode polarization data with limited spherical-harmonic modes may resolve this shortcoming.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 140
HyGAL: Characterizing the Galactic Interstellar Medium with Observations of Hydrides and Other Small Molecules. I. Survey Description and a First Look Toward W3(OH), W3 IRS5, and NGC 7538 IRS1
A. M. Jacob; D. A. Neufeld; P. Schilke; H. Wiesemeyer; W.-J. Kim; S. Bialy; M. Busch; D. Elia; E. Falgarone; M. Gerin; B. Godard; R. Higgins; P. Hennebelle; N. Indriolo; D. C. Lis; K. M. Menten; A. Sanchez-Monge; T. Möller; V. Ossenkopf-Okada; M. R. Rugel; D. Seifried; P. Sonnentrucker; S. Walch; M. G. Wolfire; F. Wyrowski; V. Valdivia
<jats:title>Abstract</jats:title> <jats:p>The HyGAL Stratospheric Observatory for Infrared Astronomy legacy program surveys six hydride molecules—ArH<jats:sup>+</jats:sup>, OH<jats:sup>+</jats:sup>, H<jats:sub>2</jats:sub>O<jats:sup>+</jats:sup>, SH, OH, and CH—and two atomic constituents—C<jats:sup>+</jats:sup> and O—within the diffuse interstellar medium (ISM) by means of absorption-line spectroscopy toward 25 bright Galactic background continuum sources. This detailed spectroscopic study is designed to exploit the unique value of specific hydrides as tracers and probes of different phases of the ISM, as demonstrated by recent studies with the Herschel Space Observatory. The observations performed under the HyGAL program will allow us to address several questions related to the life cycle of molecular material in the ISM and the physical processes that impact the phase transition from atomic to molecular gas, such as: (1) What is the distribution function of the H<jats:sub>2</jats:sub> fraction in the ISM? (2) How does the ionization rate due to low-energy cosmic rays vary within the Galaxy? (3) What is the nature of interstellar turbulence (e.g., typical shear or shock velocities), and what mechanisms lead to its dissipation? In this overview, we discuss the observing strategy, the synergies with ancillary and archival observations of other small molecules, and the data reduction and analysis schemes we adopted; and we present the first results obtained toward three of the survey targets, W3(OH), W3 IRS5, and NGC 7538 IRS1. Robust measurements of the column densities of these hydrides—obtained through widespread observations of absorption lines—help address the questions raised, and there is a very timely synergy between these observations and the development of theoretical models, particularly pertaining to the formation of H<jats:sub>2</jats:sub> within the turbulent ISM. The provision of enhanced HyGAL data products will therefore serve as a legacy for future ISM studies.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 141
No Redshift Evolution of Galaxies’ Dust Temperatures Seen from 0 < z < 2
Patrick M. Drew; Caitlin M. Casey
<jats:title>Abstract</jats:title> <jats:p>Some recent literature has claimed there to be an evolution in galaxies’ dust temperatures toward warmer (or colder) spectral energy distributions (SEDs) between low and high redshift. These conclusions are driven by both theoretical models and empirical measurement. Such claims sometimes contradict one another and are prone to biases in samples or SED fitting techniques. What has made direct comparisons difficult is that there is no uniform approach to fitting galaxies’ infrared/millimeter SEDs. Here we aim to standardize the measurement of galaxies’ dust temperatures with a python-based SED fitting procedure, MCIRSED.<jats:xref ref-type="fn" rid="apjac6270fn1"> <jats:sup>1</jats:sup> </jats:xref> <jats:fn id="apjac6270fn1"> <jats:label> <jats:sup>1</jats:sup> </jats:label> <jats:p>Publicly available at <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://github.com/pdrew32/mcirsed" xlink:type="simple">github.com/pdrew32/mcirsed</jats:ext-link>.</jats:p> </jats:fn> We draw on reference data sets observed by Infrared Astronomical Satellite, Herschel, and <jats:sc>Scuba-2</jats:sc> to test for redshift evolution out to <jats:italic>z</jats:italic> ∼ 2. We anchor our work to the <jats:italic>L</jats:italic> <jats:sub>IR</jats:sub>–<jats:italic>λ</jats:italic> <jats:sub>peak</jats:sub> plane, where there is an empirically observed anticorrelation between IR luminosity and rest-frame peak wavelength (an observational proxy for luminosity-weighted dust temperature) such that <jats:inline-formula> <jats:tex-math> <?CDATA $\left\langle {\lambda }_{\mathrm{peak}}\right\rangle ={\lambda }_{{\rm{t}}}{({L}_{\mathrm{IR}}/{L}_{{\rm{t}}})}^{\eta }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mfenced close="〉" open="〈"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>λ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>peak</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:mfenced> <mml:mo>=</mml:mo> <mml:msub> <mml:mrow> <mml:mi>λ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">t</mml:mi> </mml:mrow> </mml:msub> <mml:msup> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>IR</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">t</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>η</mml:mi> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac6270ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> where <jats:italic>η</jats:italic> = −0.09 ± 0.01, L<jats:sub>t</jats:sub> = 10<jats:sup>12</jats:sup> <jats:italic>L</jats:italic> <jats:sub>⊙</jats:sub>, and <jats:italic>λ</jats:italic> <jats:sub>t</jats:sub> = 92 ± 2 <jats:italic>μ</jats:italic>m. We find no evidence for redshift evolution of galaxies’ temperatures, or <jats:italic>λ</jats:italic> <jats:sub>peak</jats:sub>, at fixed <jats:italic>L</jats:italic> <jats:sub>IR</jats:sub> from 0 < <jats:italic>z</jats:italic> < 2 with >99.99% confidence. Our finding does not preclude evolution in dust temperatures at fixed stellar mass, which is expected from a nonevolving <jats:italic>L</jats:italic> <jats:sub>IR</jats:sub>–<jats:italic>λ</jats:italic> <jats:sub>peak</jats:sub> relation and a strongly evolving SFR–M<jats:sub>⋆</jats:sub> relation. The breadth of dust temperatures (<jats:inline-formula> <jats:tex-math> <?CDATA ${\sigma }_{\mathrm{log}{\lambda }_{\mathrm{peak}}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>σ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>log</mml:mi> <mml:msub> <mml:mrow> <mml:mi>λ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>peak</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac6270ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>) at a given <jats:italic>L</jats:italic> <jats:sub>IR</jats:sub> is likely driven by variation in galaxies’ dust geometries and sizes, and it does not evolve. Testing for <jats:italic>L</jats:italic> <jats:sub>IR</jats:sub>–<jats:italic>λ</jats:italic> <jats:sub>peak</jats:sub> evolution toward higher redshift (<jats:italic>z</jats:italic> ∼ 5−6) requires better sampling of galaxies’ dust SEDs near their peaks (observed ∼200–600 <jats:italic>μ</jats:italic>m) with ≲1 mJy sensitivity. This poses a significant challenge to current instrumentation.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 142
Long-term Evolution of a Supernova Remnant Hosting a Double Neutron Star Binary
Tomoki Matsuoka; Shiu-Hang Lee; Keiichi Maeda; Tomoya Takiwaki; Takashi J. Moriya
<jats:title>Abstract</jats:title> <jats:p>An ultra-stripped supernova (USSN) is a type of core-collapse supernova explosion proposed to be a candidate formation site of a double neutron star (DNS) binary. We investigate the dynamical evolution of an ultra-stripped supernova remnant (USSNR), which should host a DNS at its center. By accounting for the mass-loss history of the progenitor binary using a model developed by a previous study, we construct the large-scale structure of the circumstellar medium (CSM) up to a radius ∼100 pc, and simulate the explosion and subsequent evolution of a USSN surrounded by such a CSM environment. We find that the CSM encompasses an extended region characterized by a hot plasma with a temperature ∼10<jats:sup>8</jats:sup> K located around the termination shock of the wind from the progenitor binary (∼10 pc), and the USSNR blast wave is drastically weakened while penetrating through this hot plasma. Radio continuum emission from a young USSNR is sufficiently bright to be detectable if it inhabits our galaxy but faint compared to the observed Galactic supernova remnants (SNRs), and thereafter declines in luminosity through adiabatic cooling. Within our parameter space, USSNRs typically exhibit a low radio luminosity and surface brightness compared to the known Galactic SNRs. Due to the small event rate of USSNe and their relatively short observable life span, we calculate that USSNRs account for only ∼0.1%–1% of the total SNR population. This is consistent with the fact that no SNR hosting a DNS binary has been discovered in the Milky Way so far.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 143
Gas and Dust Shadows in the TW Hydrae Disk
Richard Teague; Jaehan Bae; Myriam Benisty; Sean M. Andrews; Stefano Facchini; Jane Huang; David Wilner
<jats:title>Abstract</jats:title> <jats:p>We present new observations of CO <jats:italic>J</jats:italic> = 2 − 1 emission from the protoplanetary disk around TW Hya. Emission is detected out to 240 au (4″) and found to exhibit azimuthal variations up to 20% beyond 180 au (3″), with the west side of the disk brighter than the east. This asymmetry is interpreted as tracing the shadow previously seen in scattered light. A re-analysis of the multi-epoch observations of the dust shadow in scattered light from Debes et al. suggests that an oscillatory motion would provide a better model of the temporal evolution of the dust shadow rather than orbital motion. Both models predict an angular offset between the dust shadow and the gas shadow of up to ∼100°. We attribute this offset to the finite rate at which dust grains and gas molecules can exchange heat, dominated by the collisional rate between gas molecules and dust grains, <jats:italic>t</jats:italic> <jats:sub>coll</jats:sub>. The angular offsets derived are equivalent to collisional timescales that range from the near-instantaneous up to <jats:italic>t</jats:italic> <jats:sub>coll</jats:sub> ∼ 10 yr, depending on whether a straight or curved dust shadow, as suggested by Hubble Space Telescope observations reported by Debes et al., is adopted. The inferred range of <jats:italic>t</jats:italic> <jats:sub>coll</jats:sub> are consistent with those predictions based on representative gas densities, temperatures, gas-to-dust ratios and grain sizes. These results represent the first time empirical constraints can be placed on <jats:italic>t</jats:italic> <jats:sub>coll</jats:sub>.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 144
Yellow Post-asymptotic-giant-branch Stars as Standard Candles. I. Calibration of the Luminosity Function in Galactic Globular Clusters
Robin Ciardullo; Howard E. Bond; Brian D. Davis; Michael H. Siegel
<jats:title>Abstract</jats:title> <jats:p>We use the results of a survey for low-surface-gravity stars in Galactic (and LMC) globular clusters to show that “yellow” post-asymptotic-branch (yPAGB) stars are likely to be excellent extragalactic standard candles, capable of producing distances to early-type galaxies that are accurate to a couple of percent. We show that the mean bolometric magnitude of the 10 yPAGB stars in globular clusters is 〈<jats:italic>M</jats:italic> <jats:sub>bol</jats:sub>〉 = −3.38 ± 0.03, a value that is ∼0.2 mag brighter than that predicted from the latest post-horizontal-branch evolutionary tracks. More importantly, we show that the observed dispersion in the distribution is only 0.10 mag, i.e., better than the scatter for individual Cepheids. We describe the physics that can produce such a small dispersion and show that, if one restricts surveys to the color range 0.0 ≲ (<jats:italic>B</jats:italic> − <jats:italic>V</jats:italic>)<jats:sub>0</jats:sub> ≲ 0.5, then samples of nonvariable yPAGB stars can be identified quite easily with a minimum of contamination. The extremely bright absolute <jats:italic>V</jats:italic> magnitudes of these stars (〈<jats:italic>M</jats:italic> <jats:sub> <jats:italic>V</jats:italic> </jats:sub>〉 = −3.37) make them, by far, the visually brightest objects in old stellar populations and ideal Population II standard candles for measurements out to ∼10 Mpc with current instrumentation. A Hubble Space Telescope survey in the halos of galaxies in the M81 and Sculptor groups could therefore serve as an effective cross-check on both the Cepheid and tip-of-the-red-giant-branch distance scales.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 145
The Baltimore Oriole’s Nest: Cool Winds from the Inner and Outer Parts of a Star-forming Galaxy at z = 1.3
Weichen Wang; Susan A. Kassin; S. M. Faber; David C. Koo; Emily C. Cunningham; Hassen M. Yesuf; Guillermo Barro; Puragra Guhathakurta; Benjamin J. Weiner; Alexander de la Vega; Yicheng Guo; Timothy M. Heckman; Camilla Pacifici; Bingjie Wang; Charlotte Welker
<jats:title>Abstract</jats:title> <jats:p>Strong galactic winds are ubiquitous at <jats:italic>z</jats:italic> ≳ 1. However, it is not well-known where inside galaxies these winds are launched from. We study the cool winds (∼10<jats:sup>4</jats:sup> K) in two spatial regions of a massive galaxy at <jats:italic>z</jats:italic> = 1.3, which we nickname the “Baltimore Oriole’s Nest.” The galaxy has a stellar mass of 10<jats:sup>10.3±0.3</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub>, is located on the star-forming main sequence, and has a morphology indicative of a recent merger. Gas kinematics indicate a dynamically complex system with velocity gradients ranging from 0 to 60 km s<jats:sup>−1</jats:sup>. The two regions studied are: a dust-reddened center (Central region), and a blue arc at 7 kpc from the center (Arc region). We measure the Fe <jats:sc>ii</jats:sc> and Mg <jats:sc>ii</jats:sc> absorption line profiles from deep Keck/DEIMOS spectra. Blueshifted wings up to 450 km s<jats:sup>−1</jats:sup> are found for both regions. The Fe <jats:sc>ii</jats:sc> column densities of winds are 10<jats:sup>14.7±0.2</jats:sup> cm<jats:sup>−2</jats:sup> and 10<jats:sup>14.6±0.2</jats:sup> cm<jats:sup>−2</jats:sup> toward the Central and Arc regions, respectively. Our measurements suggest that the winds are most likely launched from both regions. The winds may be driven by the spatially extended star formation, the surface density of which is around 0.2 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> yr<jats:sup>−1</jats:sup> · kpc<jats:sup>−2</jats:sup> in both regions. The mass outflow rates are estimated to be 4 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> yr<jats:sup>−1</jats:sup> and 3 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> yr<jats:sup>−1</jats:sup> for the Central and Arc regions, with uncertainties of one order of magnitude or more. The findings of this work and a few previous studies suggest that the cool galactic winds at <jats:italic>z</jats:italic> ≳ 1 might be commonly launched from the entire spatial extents of their host galaxies, due to extended galaxy star formation.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 146