Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal (ApJ)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal is an open access journal devoted to recent developments, discoveries, and theories in astronomy and astrophysics. Publications in ApJ constitute significant new research that is directly relevant to astrophysical applications, whether based on observational results or on theoretical insights or modeling.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde jul. 1995 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
0004-637X
ISSN electrónico
1538-4357
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
Lunar Orbit Measurement of the Cosmic Dawn’s 21 cm Global Spectrum
Yuan Shi; Furen Deng; Yidong Xu; Fengquan Wu; Qisen Yan; Xuelei Chen
<jats:title>Abstract</jats:title> <jats:p>A redshifted 21 cm line absorption signature is commonly expected from the cosmic dawn era, when the first stars and galaxies formed. The detailed traits of this signal can provide important insight on the cosmic history. However, high-precision measurement of this signal is hampered by ionosphere refraction and absorption, as well as radio frequency interference (RFI). Space observation can solve the problem of the ionosphere, and the Moon can shield the RFI from Earth. In this paper, we present simulations of the global spectrum measurement in the 30–120 MHz frequency band on the lunar orbit from the proposed Discovering the Sky at the Longest wavelength project. In particular, we consider how the measured signal varies as the satellite moves along the orbit and take into account the blockage of different parts of the sky by the Moon and the antenna response. We estimate the sensitivity for such a 21 cm global spectrum experiment. An rms noise level of ≤0.05 K is expected at 75 MHz after 10 orbits (∼1 day) observation, for a frequency channel width of 0.4 MHz. We also study the influence of a frequency-dependent beam, which may generate complex structures in the spectrum. Estimates of the uncertainties in the foreground and 21 cm model parameters are obtained.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 32
Quantifying Chemical and Kinematical Properties of Galactic Disks
Guozhen Hu; Zhengyi Shao
<jats:title>Abstract</jats:title> <jats:p>We aim to quantify the chemical and kinematical properties of Galactic disks with a sample of 119,558 giant stars having abundances and 3D velocities taken or derived from the APOGEE DR17 and Gaia EDR3 catalogs. A Gaussian mixture model is employed to distinguish the high-<jats:italic>α</jats:italic> and low-<jats:italic>α</jats:italic> sequences along the metallicity by simultaneously using chemical and kinematical data. Four disk components are identified and quantified; they are named the h<jats:italic>α</jats:italic>mp, h<jats:italic>α</jats:italic>mr, l<jats:italic>α</jats:italic>mp, and l<jats:italic>α</jats:italic>mr disks and correspond to the high<jats:italic>-α</jats:italic> or low<jats:italic>-α</jats:italic>, and metal-poor or metal-rich properties. Combined with the spatial and stellar-age information, we confirm that they are well interpreted by the two-infall formation model. The first infall of turbulent gas quickly forms the hot and thick h<jats:italic>α</jats:italic>mp disk with consequent thinner h<jats:italic>α</jats:italic>mr and l<jats:italic>α</jats:italic>mr disks. Then the second gas accretion forms a thinner and outermost l<jats:italic>α</jats:italic>mp disk. We find that the inside-out and upside-down scenario does not only satisfy the overall Galactic disk formation of these two major episodes but is also presented in the formation sequence of the three inner disks. Importantly, we reveal the inverse age–[M/H] trend of the l<jats:italic>α</jats:italic>mr disk, which means its younger stars are more metal-poor, indicating that the rejuvenated gas from the second accretion gradually dominates later star formation. Meanwhile, the recently formed stars converge to [M/H] ∼ −0.1 dex, demonstrating a sufficient mixture of gas from two infalls.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 33
Virial Clumps in Central Molecular Zone Clouds
Philip C. Myers; H Perry Hatchfield; Cara Battersby
<jats:title>Abstract</jats:title> <jats:p>CMZoom survey observations with the Submillimeter Array are analyzed to describe the virial equilibrium (VE) and star-forming potential of 755 clumps in 22 clouds in the Central Molecular Zone (CMZ) of the Milky Way. In each cloud, nearly all clumps follow the column density–mass trend <jats:italic>N</jats:italic> ∝ <jats:italic>M</jats:italic> <jats:sup> <jats:italic>s</jats:italic> </jats:sup>, where <jats:italic>s</jats:italic> = 0.38 ± 0.03 is near the pressure-bounded limit <jats:italic>s</jats:italic> <jats:sub> <jats:italic>p</jats:italic> </jats:sub> = 1/3. This trend is expected when gravitationally unbound clumps in VE have similar velocity dispersion and external pressure. Nine of these clouds also harbor one or two distinctly more massive clumps. These properties allow a VE model of bound and unbound clumps in each cloud, where the most massive clump has the VE critical mass. These models indicate that 213 clumps have velocity dispersion 1–2 km s<jats:sup>−1</jats:sup>, mean external pressure (0.5–4) × 10<jats:sup>8</jats:sup> cm<jats:sup>−3</jats:sup> K, bound clump fraction 0.06, and typical virial parameter <jats:italic>α</jats:italic> = 4–15. These mostly unbound clumps may be in VE with their turbulent cloud pressure, possibly driven by inflow from the Galactic bar. In contrast, most Sgr B2 clumps are bound according to their associated sources and <jats:italic>N</jats:italic>–<jats:italic>M</jats:italic> trends. When the CMZ clumps are combined into mass distributions, their typical power-law slope is analyzed with a model of stopped accretion. It also indicates that most clumps are unbound and cannot grow significantly, due to their similar timescales of accretion and dispersal, ∼0.2 Myr. Thus, virial and dynamical analyses of the most extensive clump census available indicate that star formation in the CMZ may be suppressed by a significant deficit of gravitationally bound clumps.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 34
ALMA Measures Molecular Gas Reservoirs Comparable to Field Galaxies in a Low-mass Galaxy Cluster at z = 1.3
Christina C. Williams; Stacey Alberts; Justin S. Spilker; Allison G. Noble; Mauro Stefanon; Christopher N. A. Willmer; Rachel Bezanson; Desika Narayanan; Katherine E. Whitaker
<jats:title>Abstract</jats:title> <jats:p>We report the serendipitous discovery of an overdensity of CO emitters in an X-ray-identified cluster (Log<jats:sub>10</jats:sub> <jats:italic>M</jats:italic> <jats:sub>halo</jats:sub>/<jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> ∼ 13.6 at <jats:italic>z</jats:italic> = 1.3188) using ALMA. We present spectroscopic confirmation of six new cluster members exhibiting CO(2–1) emission, adding to two existing optical/IR spectroscopic members undetected in CO. This is the lowest-mass cluster to date at <jats:italic>z</jats:italic> > 1 with molecular gas measurements, bridging the observational gap between galaxies in the more extreme, well-studied clusters (Log<jats:sub>10</jats:sub> <jats:italic>M</jats:italic> <jats:sub>halo</jats:sub>/<jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> ≳ 14) and those in group or field environments at cosmic noon. The CO sources are concentrated on the sky (within ∼1 arcmin diameter) and phase space analysis indicates the gas resides in galaxies already within the cluster environment. We find that CO sources sit in similar phase space as CO-rich galaxies in more massive clusters at similar redshifts (have similar accretion histories) while maintaining field-like molecular gas reservoirs, compared to scaling relations. This work presents the deepest CO survey to date in a galaxy cluster at <jats:italic>z</jats:italic> > 1, uncovering gas reservoirs down to <jats:inline-formula> <jats:tex-math> <?CDATA ${M}_{{{\rm{H}}}_{2}}\gt 1.6\times {10}^{10}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> <mml:mo>></mml:mo> <mml:mn>1.6</mml:mn> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac58faieqn1.gif" xlink:type="simple" /> </jats:inline-formula> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> (5<jats:italic>σ</jats:italic> at 50% primary beam). Our deep limits rule out the presence of gas content in excess of the field scaling relations; however, combined with literature CO detections, cluster gas fractions in general appear systematically high, on the upper envelope or above the field. This study is the first demonstration that low-mass clusters at <jats:italic>z</jats:italic> ∼ 1–2 can host overdensities of CO emitters with surviving gas reservoirs, in line with the prediction that quenching is delayed after first infall while galaxies consume the gas bound to the disk.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 35
A Rich Satellite Population of the NGC 4437 Group and Implications of a Magnitude Gap for Galaxy Group Assembly History
Yoo Jung Kim; Jisu Kang; Myung Gyoon Lee; In Sung Jang
<jats:title>Abstract</jats:title> <jats:p>Both observations and cosmological simulations have recently shown that there is a large scatter in the number of satellites of Milky Way (MW)–like galaxies. In this study, we investigate the relation between the satellite number and galaxy group assembly history using the <jats:italic>r</jats:italic>-band magnitude gap (Δ<jats:italic>m</jats:italic> <jats:sub>12</jats:sub>) between the brightest and second-brightest galaxies as an indicator. From 20 deg<jats:sup>2</jats:sup> of the Hyper Suprime-Cam Subaru Strategic Program Wide layer, we identify 17 dwarf satellite candidates around NGC 4437, a spiral galaxy with about one-fourth of the MW stellar mass. We estimate their distances using the surface brightness fluctuation method. Then we confirm five candidates as members of the NGC 4437 group, resulting in a total of seven group members. Combining the NGC 4437 group (with Δ<jats:italic>m</jats:italic> <jats:sub>12</jats:sub> = 2.5 mag) with other groups in the literature, we find a stratification of the satellite number by Δ<jats:italic>m</jats:italic> <jats:sub>12</jats:sub> for a given host stellar mass. The satellite number for the given host stellar mass decreases as Δ<jats:italic>m</jats:italic> <jats:sub>12</jats:sub> increases. The same trend is found in simulated galaxy groups in the TNG50 simulation of the IllustrisTNG project. We also find that the host galaxies in groups with a smaller Δ<jats:italic>m</jats:italic> <jats:sub>12</jats:sub> (like NGC 4437) have assembled their halo mass more recently than those in larger gap groups, and that their stellar-to-halo mass ratios increase as Δ<jats:italic>m</jats:italic> <jats:sub>12</jats:sub> increases. These results show that the large scatter in the satellite number is consistent with a large range of Δ<jats:italic>m</jats:italic> <jats:sub>12</jats:sub>, indicating diverse group assembly histories.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 36
Is There an Enormous Cold Front at the Virial Radius of the Perseus Cluster?
S. A. Walker; M. S. Mirakhor; J. ZuHone; J. S. Sanders; A. C. Fabian; P. Diwanji
<jats:title>Abstract</jats:title> <jats:p>We present new XMM-Newton observations extending the mosaic of the Perseus cluster out to the virial radius to the west. Previous studies with ROSAT have reported a large excess in surface brightness to the west, possibly the result of large-scale gas sloshing. In our new XMM-Newton observations we have found two X-ray surface brightness edges at 1.2 and 1.7 Mpc to the west. The temperature measurements obtained with Suzaku data indicate that the temperature increases sharply at each edge, consistent with what would be expected from cold fronts. However the the XMM-Newton data are affected by stray light, which at present is a poorly understood source of systematic error that can also lead to curved features in X-ray images. To test our results, we compared our X-ray surface brightness profile with that obtained from ROSAT PSPC data. While the edge at 1.2 Mpc is confirmed by ROSAT PSPC, the ROSAT data quality is insufficient to confirm the outer edge at 1.7 Mpc. Further observations with future X-ray telescopes will be needed to confirm the existence of the outer edge at 1.7 Mpc. By comparing with numerical simulations, we find that these large cold fronts require a large impact parameter, and low-mass ratio mergers that can produce fast gas motions without destroying the cluster core.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 37
A SUBLIME 3D Model for Cometary Coma Emission: The Hypervolatile-rich Comet C/2016 R2 (PanSTARRS)
M. A. Cordiner; I. M. Coulson; E. Garcia-Berrios; C. Qi; F. Lique; M. Zołtowski; M. de Val-Borro; Y.-J. Kuan; W.-H. Ip; S. Mairs; N. X. Roth; S. B. Charnley; S. N. Milam; W.-L Tseng; Y.-L Chuang
<jats:title>Abstract</jats:title> <jats:p>The coma of comet C/2016 R2 (PanSTARRS) is one of the most chemically peculiar ever observed, in particular due to its extremely high CO/H<jats:sub>2</jats:sub>O and <jats:inline-formula> <jats:tex-math> <?CDATA ${{\rm{N}}}_{2}^{+}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mi mathvariant="normal">N</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac5893ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>/H<jats:sub>2</jats:sub>O ratios, and unusual trace volatile abundances. However, the complex shape of its CO emission lines, as well as uncertainties in the coma structure and excitation, has lead to ambiguities in the total CO production rate. We performed high-resolution, spatially, spectrally, and temporally resolved CO observations using the James Clerk Maxwell Telescope and Submillimeter Array to elucidate the outgassing behavior of C/2016 R2. Results are analyzed using a new, time-dependent, three-dimensional radiative transfer code (SUBlimating gases in LIME; SUBLIME, based on the open-source version of the LIne Modeling Engine), incorporating for the first time, accurate state-to-state collisional rate coefficients for the CO–CO system. The total CO production rate was found to be in the range of (3.8 − 7.6) × 10<jats:sup>28</jats:sup> s<jats:sup>−1</jats:sup> between 2018 January 13 and February 1 (at <jats:italic>r</jats:italic> <jats:sub>H</jats:sub> = 2.8–2.9 au), with a mean value of (5.3 ± 0.6) × 10<jats:sup>28</jats:sup> s<jats:sup>−1</jats:sup>. The emission is concentrated in a near-sunward jet, with a half-opening angle of ∼62° and an outflow velocity of 0.51 ± 0.01 km s<jats:sup>−1</jats:sup>, compared to 0.25 ± 0.01 km s<jats:sup>−1</jats:sup> in the ambient (and nightside) coma. Evidence was also found for an extended source of CO emission, possibly due to icy grain sublimation around 1.2 × 10<jats:sup>5</jats:sup> km from the nucleus. Based on the coma molecular abundances, we propose that the nucleus ices of C/2016 R2 can be divided into a rapidly sublimating apolar phase, rich in CO, CO<jats:sub>2</jats:sub>, N<jats:sub>2</jats:sub>, and CH<jats:sub>3</jats:sub>OH, and a predominantly frozen (or less abundant), polar phase containing more H<jats:sub>2</jats:sub>O, CH<jats:sub>4</jats:sub>, H<jats:sub>2</jats:sub>CO, and HCN.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 38
Bayesian Solar Wind Modeling with Pulsar Timing Arrays
Jeffrey S. Hazboun; Joseph Simon; Dustin R. Madison; Zaven Arzoumanian; H. Thankful Cromartie; Kathryn Crowter; Megan E. DeCesar; Paul B. Demorest; Timothy Dolch; Justin A. Ellis; Robert D. Ferdman; Elizabeth C. Ferrara; Emmanuel Fonseca; Peter A. Gentile; Glenn Jones; Megan L. Jones; Michael T. Lam; Lina Levin; Duncan R. Lorimer; Ryan S. Lynch; Maura A. McLaughlin; Cherry Ng; David J. Nice; Timothy T. Pennucci; Scott M. Ransom; Paul S. Ray; Renée Spiewak; Ingrid H. Stairs; Kevin Stovall; Joseph K. Swiggum; Weiwei Zhu
<jats:title>Abstract</jats:title> <jats:p>Using Bayesian analyses we study the solar electron density with the NANOGrav 11 yr pulsar timing array (PTA) data set. Our model of the solar wind is incorporated into a global fit starting from pulse times of arrival. We introduce new tools developed for this global fit, including analytic expressions for solar electron column densities and open source models for the solar wind that port into existing PTA software. We perform an ab initio recovery of various solar wind model parameters. We then demonstrate the richness of information about the solar electron density, <jats:italic>n</jats:italic> <jats:sub> <jats:italic>E</jats:italic> </jats:sub>, that can be gleaned from PTA data, including higher order corrections to the simple 1/<jats:italic>r</jats:italic> <jats:sup>2</jats:sup> model associated with a free-streaming wind (which are informative probes of coronal acceleration physics), quarterly binned measurements of <jats:italic>n</jats:italic> <jats:sub> <jats:italic>E</jats:italic> </jats:sub> and a continuous time-varying model for <jats:italic>n</jats:italic> <jats:sub> <jats:italic>E</jats:italic> </jats:sub> spanning approximately one solar cycle period. Finally, we discuss the importance of our model for chromatic noise mitigation in gravitational-wave analyses of pulsar timing data and the potential of developing synergies between sophisticated PTA solar electron density models and those developed by the solar physics community.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 39
Morphological Evolution of the Hosts of Far-infrared/Submillimeter Galaxies
Chenxiaoji Ling; Haojing Yan
<jats:title>Abstract</jats:title> <jats:p>We present a host morphological study of 1266 far-infrared galaxies (FIRGs) and submillimeter galaxies (SMGs) in the Cosmic Evolution Survey field using the F160W and F814W images obtained by the Hubble Space Telescope. The FIRGs and SMGs are selected from the Herschel Multi-tiered Extragalactic Survey and the SCUBA-2 Cosmology Legacy Survey, respectively. Their precise locations are based on the interferometry data from the Atacama Large Millimeter/submillimeter Array and the Very Large Array. These objects are mostly at 0.1 ≲ <jats:italic>z</jats:italic> ≲ 3. The SMGs can be regarded as the population at the high-redshift tail of the FIRGs. Most of our FIRGs/SMGs have a total infrared luminosity (<jats:italic>L</jats:italic> <jats:sub>IR</jats:sub>) in the regimes of luminous and ultraluminous infrared galaxies (LIRGs, <jats:italic>L</jats:italic> <jats:sub>IR</jats:sub> = 10<jats:sup>11−12</jats:sup> <jats:italic>L</jats:italic> <jats:sub>⊙</jats:sub>; ULIRGs, <jats:italic>L</jats:italic> <jats:sub>IR</jats:sub> > 10<jats:sup>12</jats:sup> <jats:italic>L</jats:italic> <jats:sub>⊙</jats:sub>). The hosts of the SMG ULIRGs, FIRG ULIRGs, and FIRG LIRGs are of sufficient numbers to allow for detailed analysis, and they are only modestly different in their stellar masses. Their morphological types are predominantly disk galaxies (type D) and irregular/interacting systems (type Irr/Int). There is a morphological transition at <jats:italic>z</jats:italic> ≈ 1.25 for the FIRG ULIRG hosts, above which the Irr/Int galaxies dominate and below which the D and Irr/Int galaxies have nearly the same contributions. The SMG ULIRG hosts seem to experience a similar transition. This suggests a shift in the relative importance of galaxy mergers/interactions versus secular gas accretions in “normal” disk galaxies as the possible triggering mechanisms of ULIRGs. The FIRG LIRG hosts are predominantly D galaxies over <jats:italic>z</jats:italic> = 0.25–1.25, where they are of sufficient statistics.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 40
Massive Molecular Gas Reservoir in a Luminous Submillimeter Galaxy during Cosmic Noon
Bin Liu; N. Chartab; H. Nayyeri; A. Cooray; C. Yang; D. A Riechers; M. Gurwell; Zong-hong Zhu; S. Serjeant; E. Borsato; M. Negrello; L. Marchetti; E. M. Corsini; P. van der Werf
<jats:title>Abstract</jats:title> <jats:p>We present multiband observations of an extremely dusty star-forming lensed galaxy (HERS1) at <jats:italic>z</jats:italic> = 2.553. High-resolution maps of HST/WFC3, SMA, and ALMA show a partial Einstein ring with a radius of ∼3″. The deeper HST observations also show the presence of a lensing arc feature associated with a second lens source, identified to be at the same redshift as the bright arc based on a detection of the [N <jats:sc>ii</jats:sc>] 205 <jats:italic>μ</jats:italic>m emission line with ALMA. A detailed model of the lensing system is constructed using the high-resolution HST/WFC3 image, which allows us to study the source-plane properties and connect rest-frame optical emission with properties of the galaxy as seen in submillimeter and millimeter wavelengths. Corrected for lensing magnification, the spectral energy distribution fitting results yield an intrinsic star formation rate of about 1000 ± 260 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> yr<jats:sup>−1</jats:sup>, a stellar mass <jats:inline-formula> <jats:tex-math> <?CDATA ${M}_{* }={4.3}_{-1.0}^{+2.2}\times {10}^{11}{M}_{\odot }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>*</mml:mo> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>4.3</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.0</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>2.2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>11</mml:mn> </mml:mrow> </mml:msup> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac5745ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>, and a dust temperature <jats:inline-formula> <jats:tex-math> <?CDATA ${T}_{{\rm{d}}}={35}_{-1}^{+2}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">d</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>35</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac5745ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> K. The intrinsic CO emission line (<jats:italic>J</jats:italic> <jats:sub>up</jats:sub> = 3, 4, 5, 6, 7, 9) flux densities and CO spectral line energy distribution are derived based on the velocity-dependent magnification factors. We apply a radiative transfer model using the large velocity gradient method with two excitation components to study the gas properties. The low-excitation component has a gas density <jats:inline-formula> <jats:tex-math> <?CDATA ${n}_{{{\rm{H}}}_{2}}={10}^{3.8\pm 0.6}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>3.8</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.6</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac5745ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> cm<jats:sup>−3</jats:sup> and kinetic temperature <jats:inline-formula> <jats:tex-math> <?CDATA ${T}_{{\rm{k}}}={18}_{-5}^{+7}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">k</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>18</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac5745ieqn4.gif" xlink:type="simple" /> </jats:inline-formula> K, and the high-excitation component has <jats:inline-formula> <jats:tex-math> <?CDATA ${n}_{{{\rm{H}}}_{2}}={10}^{3.1\pm 0.4}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>3.1</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.4</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac5745ieqn5.gif" xlink:type="simple" /> </jats:inline-formula> cm<jats:sup>−3</jats:sup> and <jats:inline-formula> <jats:tex-math> <?CDATA ${T}_{{\rm{k}}}={480}_{-220}^{+260}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">k</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>480</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>220</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>260</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjac5745ieqn6.gif" xlink:type="simple" /> </jats:inline-formula> K. Additionally, HERS1 has a gas fraction of about 0.19 ± 0.14 and is expected to last 100 Myr. These properties offer a detailed view of a typical submillimeter galaxy during the peak epoch of star formation activity.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 41